Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 87: 117303, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37167713

RESUMO

Since the 1950's, AMP-kinase (AMPK) has been used as a promising target for the development of antidiabetic drugs against Type 2 diabetes mellitus (T2D). Indeed, the canonical antidiabetic drug metformin recruits, at least partially, AMPK activation for its therapeutic effect. Herein we present design and synthesis of 20 novel relatively polar cyclic and acyclic dithioacetals of 2-(Het)arylchroman-6-carbaldehydes, 2-phenyl-1,4-benzodioxane-6-carbaldehyde, and 2-phenylbenzofuran-5-carbaldehyde, which were developed as potential AMPK activators. Three of the synthesized dithioacetals demonstrated significant enhancement (≥70%) of glucose uptake in rat L6 myotubes. Noteworthy, one of the dithioacetals, namely 4-(6-(1,3-dithian-2-yl)chroman-2-yl)pyridine, exhibited high potency comparing to other molecules. It increased the rate of glucose uptake in rat L6 myotubes and augmented insulin secretion from rat INS-1E cells in pharmacological relevant concentrations (up to 2 µM). Both effects were mediated by activation of AMPK. In addition, the compound showed excellent pharmacokinetic profile in healthy mice, including maximal oral bioavailability. Such bifunctionality (increased glucose uptake and insulin secretion) can be used as a starting point for the development of a novel class of antidiabetic drugs with dual activity that is relevant for T2D treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Ratos , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/farmacologia , Linhagem Celular , Fibras Musculares Esqueléticas , Insulina/farmacologia
2.
Antioxidants (Basel) ; 12(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36829896

RESUMO

Diabetes-induced oxidative stress induces the development of vascular complications, which are significant causes of morbidity and mortality in diabetic patients. Among these, diabetic retinopathy (DR) is often caused by functional changes in the blood-retinal barrier (BRB) due to harmful oxidative stress events in lipids, proteins, and DNA. Docosahexaenoic acid (DHA) has a potential therapeutic effect against hyperglycemia-induced oxidative damage and apoptotic pathways in the main constituents of BRB, retinal pigment epithelium cells (ARPE-19). Effective antioxidant response elicited by DHA is driven by the activation of the Nrf2/Nqo1 signaling cascade, which leads to the formation of NADH, a reductive agent found in the cytoplasm. Nrf2 also induces the expression of genes encoding enzymes involved in lipid metabolism. This study, therefore, aims at investigating the modulation of lipid metabolism induced by high-glucose (HG) on ARPE-19 cells through the integration of metabolic imaging and molecular biology to provide a comprehensive functional and molecular characterization of the mechanisms activated in the disease, as well the therapeutic role of DHA. This study shows that HG augments RPE metabolic processes by enhancing lipid metabolism, from fatty acid uptake and turnover to lipid biosynthesis and ß-oxidation. DHA exerts its beneficial effect by ameliorating lipid metabolism and reducing the increased ROS production under HG conditions. This investigation may provide novel insight for formulating novel treatments for DR by targeting lipid metabolism pathways.

3.
Antioxidants (Basel) ; 11(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35739970

RESUMO

Diabetes-induced oxidative stress leads to the onset of vascular complications, which are major causes of disability and death in diabetic patients. Among these, diabetic retinopathy (DR) often arises from functional alterations of the blood-retinal barrier (BRB) due to damaging oxidative stress reactions in lipids, proteins, and DNA. This study aimed to investigate the impact of the ω3-polyunsaturated docosahexaenoic acid (DHA) on the regulation of redox homeostasis in the human retinal pigment epithelial (RPE) cell line (ARPE-19) under hyperglycemic-like conditions. The present results show that the treatment with DHA under high-glucose conditions activated erythroid 2-related factor Nrf2, which orchestrates the activation of cellular antioxidant pathways and ultimately inhibits apoptosis. This process was accompanied by a marked increase in the expression of NADH (Nicotinamide Adenine Dinucleotide plus Hydrogen) Quinone Oxidoreductase 1 (Nqo1), which is correlated with a contextual modulation and intracellular re-organization of the NAD+/NADH redox balance. This investigation of the mechanisms underlying the impairment induced by high levels of glucose on redox homeostasis of the BRB and the subsequent recovery provided by DHA provides both a powerful indicator for the detection of RPE cell impairment as well as a potential metabolic therapeutic target for the early intervention in its treatment.

4.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803648

RESUMO

Free fatty acids are essential structural components of the cell, and their intracellular distribution and effects on membrane organelles have crucial roles in regulating the metabolism, development, and cell cycle of most cell types. Here we engineered novel fluorescent, polarity-sensitive fatty acid derivatives, with the fatty acid aliphatic chain of increasing length (from 12 to 18 carbons). As in the laurdan probe, the lipophilic acyl tail is connected to the environmentally sensitive dimethylaminonaphthalene moiety. The fluorescence lifetime imaging analysis allowed us to monitor the intracellular distribution of the free fatty acids within the cell, and to simultaneously examine how the fluidity and the microviscosity of the membrane environment influence their localization. Each of these probes can thus be used to investigate the membrane fluidity regulation of the correspondent fatty acid intracellular distribution. We observed that, in PC-12 cells, fluorescent sensitive fatty acid derivatives with increased chain length compartmentalize more preferentially in the fluid regions, characterized by a low microviscosity. Moreover, fatty acid derivatives with the longest chain compartmentalize in lipid droplets and lysosomes with characteristic lifetimes, thus making these probes a promising tool for monitoring lipophagy and related events.


Assuntos
Ácidos Graxos/metabolismo , Corantes Fluorescentes/metabolismo , Espaço Intracelular/metabolismo , Fluidez de Membrana , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Animais , Fluorescência , Lauratos/química , Lisossomos/metabolismo , Células PC12 , Ratos , Solventes , Viscosidade
5.
Endocrinology ; 162(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33341896

RESUMO

Insulin secretion from pancreatic beta cells is tightly regulated by glucose and paracrine signals within the microenvironment of islets of Langerhans. Extracellular matrix from islet microcapillary endothelial cells (IMEC) affect beta-cell spreading and amplify insulin secretion. This study was aimed at investigating the hypothesis that contact-independent paracrine signals generated from IMEC may also modulate beta-cell insulin secretory functions. For this purpose, conditioned medium (CMp) preparations were prepared from primary cultures of rat IMEC and were used to simulate contact-independent beta cell-endothelial cell communication. Glucose-stimulated insulin secretion (GSIS) assays were then performed on freshly isolated rat islets and the INS-1E insulinoma cell line, followed by fractionation of the CMp, mass spectroscopic identification of the factor, and characterization of the mechanism of action. The IMEC-derived CMp markedly attenuated first- and second-phase GSIS in a time- and dose-dependent manner without altering cellular insulin content and cell viability. Size exclusion fractionation, chromatographic and mass-spectroscopic analyses of the CMp identified the attenuating factor as the enzyme triosephosphate isomerase (TPI). An antibody against TPI abrogated the attenuating activity of the CMp while recombinant human TPI (hTPI) attenuated GSIS from beta cells. This effect was reversed in the presence of tolbutamide in the GSIS assay. In silico docking simulation identified regions on the TPI dimer that were important for potential interactions with the extracellular epitopes of the sulfonylurea receptor in the complex. This study supports the hypothesis that an effective paracrine interaction exists between IMEC and beta cells and modulates glucose-induced insulin secretion via TPI-sulfonylurea receptor-KATP channel (SUR1-Kir6.2) complex attenuating interactions.


Assuntos
Células Endoteliais/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Triose-Fosfato Isomerase/fisiologia , Animais , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Cultura Primária de Células , Ratos , Ratos Wistar , Triose-Fosfato Isomerase/metabolismo
6.
Molecules ; 24(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627330

RESUMO

Modern omics techniques reveal molecular structures and cellular networks of tissues and cells in unprecedented detail. Recent advances in single cell analysis have further revolutionized all disciplines in cellular and molecular biology. These methods have also been employed in current investigations on the structure and function of insulin secreting beta cells under normal and pathological conditions that lead to an impaired glucose tolerance and type 2 diabetes. Proteomic and transcriptomic analyses have pointed to significant alterations in protein expression and function in beta cells exposed to diabetes like conditions (e.g., high glucose and/or saturated fatty acids levels). These nutritional overload stressful conditions are often defined as glucolipotoxic due to the progressive damage they cause to the cells. Our recent studies on the rat insulinoma-derived INS-1E beta cell line point to differential effects of such conditions in the phospholipid bilayers in beta cells. This review focuses on confocal microscopy-based detection of these profound alterations in the plasma membrane and membranes of insulin granules and lipid droplets in single beta cells under such nutritional load conditions.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Intolerância à Glucose/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Glucose/farmacologia , Intolerância à Glucose/fisiopatologia , Humanos , Células Secretoras de Insulina/química , Células Secretoras de Insulina/patologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Metabolismo dos Lipídeos , Lipidômica/métodos , Fosfolipídeos/metabolismo , Ratos , Análise de Célula Única
7.
Free Radic Res ; 53(sup1): 1068-1100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31419920

RESUMO

Phospholipids (PLs) are important biomolecules that not only constitute structural building blocks and scaffolds of cell and organelle membranes but also play a vital role in cell biochemistry and physiology. Moreover, dietary exogenous PLs are characterised by high nutritional value and other beneficial health effects, which are confirmed by numerous epidemiological studies. For this reason, PLs are of high interest in lipidomics that targets both the analysis of membrane lipid distribution as well as correlates composition of lipids with their effects on functioning of cells, tissues and organs. Lipidomic assessments follow-up the changes occurring in living organisms, such as free radical attack and oxidative modifications of the polyunsaturated fatty acids (PUFAs) build in PL structures. Oxidised PLs (oxPLs) can be generated exogenously and supplied to organisms with processed food or formed endogenously as a result of oxidative stress. Cellular and tissue oxPLs can be a biomarker predictive of the development of numerous diseases such as atherosclerosis or neuroinflammation. Therefore, suitable high-throughput analytical techniques, which enable comprehensive analysis of PL molecules in terms of the structure of hydrophilic group, fatty acid (FA) composition and oxidative modifications of FAs, have been currently developed. This review addresses all aspects of PL analysis, including lipid isolation, chromatographic separation of PL classes and species, as well as their detection. The bioinformatic tools that enable handling of a large amount of data generated during lipidomic analysis are also discussed. In addition, imaging techniques such as confocal microscopy and mass spectrometry imaging for analysis of cellular lipid maps, including membrane PLs, are presented.


Assuntos
Análise de Alimentos , Lipidômica , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Animais , Humanos , Oxirredução
8.
Noncoding RNA ; 5(2)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934986

RESUMO

Cardiovascular disease (CVD) remains the leading cause of death worldwide and, despite continuous advances, better diagnostic and prognostic tools, as well as therapy, are needed. The human transcriptome, which is the set of all RNA produced in a cell, is much more complex than previously thought and the lack of dialogue between researchers and industrials and consensus on guidelines to generate data make it harder to compare and reproduce results. This European Cooperation in Science and Technology (COST) Action aims to accelerate the understanding of transcriptomics in CVD and further the translation of experimental data into usable applications to improve personalized medicine in this field by creating an interdisciplinary network. It aims to provide opportunities for collaboration between stakeholders from complementary backgrounds, allowing the functions of different RNAs and their interactions to be more rapidly deciphered in the cardiovascular context for translation into the clinic, thus fostering personalized medicine and meeting a current public health challenge. Thus, this Action will advance studies on cardiovascular transcriptomics, generate innovative projects, and consolidate the leadership of European research groups in the field.COST (European Cooperation in Science and Technology) is a funding organization for research and innovation networks (www.cost.eu).

9.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1351-1360, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30742993

RESUMO

High density lipoprotein (HDL) has attracted the attention of biomedical community due to its well-documented role in atheroprotection. HDL has also been recently implicated in the regulation of islets of Langerhans secretory function and in the etiology of peripheral insulin sensitivity. Indeed, data from numerous studies strongly indicate that the functions of pancreatic ß-cells, skeletal muscles and adipose tissue could benefit from improved HDL functionality. To better understand how changes in HDL structure may affect diet-induced obesity and type 2 diabetes we aimed at investigating the impact of Apoa1 or Lcat deficiency, two key proteins of peripheral HDL metabolic pathway, on these pathological conditions in mouse models. We report that universal deletion of apoa1 or lcat expression in mice fed western-type diet results in increased sensitivity to body-weight gain compared to control C57BL/6 group. These changes in mouse genome correlate with discrete effects on white adipose tissue (WAT) metabolic activation and plasma glucose homeostasis. Apoa1-deficiency results in reduced WAT mitochondrial non-shivering thermogenesis. Lcat-deficiency causes a concerted reduction in both WAT oxidative phosphorylation and non-shivering thermogenesis, rendering lcat-/- mice the most sensitive to weight gain out of the three strains tested, followed by apoa1-/- mice. Nevertheless, only apoa1-/- mice show disturbed plasma glucose homeostasis due to dysfunctional glucose-stimulated insulin secretion in pancreatic ß-islets and insulin resistant skeletal muscles. Our analyses show that both apoa1-/- and lcat-/- mice fed high-fat diet have no measurable Apoa1 levels in their plasma, suggesting no direct involvement of Apoa1 in the observed phenotypic differences among groups.


Assuntos
Tecido Adiposo Branco/metabolismo , Apolipoproteína A-I/genética , Glucose/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/genética , Obesidade/genética , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Tecido Adiposo Branco/patologia , Animais , Apolipoproteína A-I/deficiência , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Homeostase/genética , Insulina/metabolismo , Resistência à Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Deficiência da Lecitina Colesterol Aciltransferase/etiologia , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fosforilação Oxidativa , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Transdução de Sinais , Termogênese/genética , Aumento de Peso/genética
10.
Free Radic Biol Med ; 124: 12-20, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29807161

RESUMO

Non-enzymatic peroxidation of polyunsaturated fatty acids (PUFA) results in the formation of various α,ß-unsaturated aldehydes, of which 4-hydroxyalkenals are abundant. The propensity of n-6 PUFA, such as linoleic acid, γ-linolenic acid and arachidonic acid, to undergo radical-induced peroxidation and generate 4-hydroxy-2E-nonenal (4-HNE) has been widely demonstrated. The ability of the latter to form covalent adducts with macromolecules and modify cellular functions has been linked to numerous pathological processes. Concomitantly, evidence has accumulated on specific signaling properties of low concentrations of 4-HNE that may induce hormetic and protective responses to peroxidation stress in cells. It has long been known that peroxidation of PUFA, and particularly arachidonic acid, also give rise to 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), which is more chemically reactive than 4-HNE. Few studies on 4-HDDE revealed its ability to avidly interact covalently with electronegative moieties in macromolecules and to its ability to selectively activate the transcriptional regulator Peroxisome Proliferator-Activated Receptor (PPAR)-ß/δ. The research on 4-HDDE has been impeded due to the lack of available pure 4-HDDE and antibodies that recognize 4-HDDE-modified epitopes in proteins. The purpose of this study was to employ an established procedure to synthesize 4-HDDE and use it to create and characterize a monoclonal antibody against 4-HDDE-modified proteins and establish its application for ELISA and immunohistochemical analysis of cells and tissues and further expand lipid peroxidation research.


Assuntos
Aldeídos/metabolismo , Anticorpos Monoclonais/metabolismo , Aorta/metabolismo , Rim/metabolismo , Peroxidação de Lipídeos , Soroalbumina Bovina/metabolismo , Adulto , Aldeídos/química , Animais , Anticorpos Monoclonais/imunologia , Aorta/imunologia , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Feminino , Humanos , Técnicas In Vitro , Rim/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , PPAR delta/metabolismo , Ratos , Ratos Wistar , Soroalbumina Bovina/química , Transdução de Sinais
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(7): 783-793, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29654826

RESUMO

Organisms store fatty acids in triacylglycerols in the form of lipid droplets, or hydrolyze triacylglycerols in response to energetic demands via activation of lipolytic or storage pathways. These pathways are complex sets of sequential reactions that are finely regulated in different cell types. Here we present a high spatial and temporal resolution-based method for the quantification of the turnover of fatty acids into triglycerides in live cells without introducing sample preparation artifacts. We performed confocal spectral imaging of intracellular micropolarity in cultured insulin secreting beta cells to detect micropolarity variations as they occur in time and at different pixels of microscope images. Acquired data are then analyzed in the framework of the spectral phasors technique. The method furnishes a metabolic parameter, which quantitatively assesses fatty acids - triacylglycerols turnover and the activation of lipolysis and storage pathways. Moreover, it provides a polarity profile, which represents the contribution of hyperpolar, polar and non-polar classes of lipids. These three different classes can be visualized on the image at a submicrometer resolution, revealing the spatial localization of lipids in cells under physiological and pathological settings. This new method allows for a fine-tuned, real-time visualization of the turnover of fatty acids into triglycerides in live cells with submicrometric resolution. It also detects imbalances between lipid storage and usage, which may lead to metabolic disorders within living cells and organisms.


Assuntos
Polaridade Celular , Microscopia Intravital/métodos , Lipídeos/análise , Lipólise , Células 3T3-L1 , Animais , Microscopia Intravital/instrumentação , Camundongos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Análise Espectral/instrumentação , Análise Espectral/métodos
12.
Pharm Res ; 34(12): 2873-2890, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28983714

RESUMO

PURPOSE: A series of novel polycyclic aromatic compounds that augment the rate of glucose uptake in L6 myotubes and increase glucose-stimulated insulin secretion from beta-cells were synthesized. Designing these molecules, we have aimed at the two main pathogenic mechanisms of T2D, deficient insulin secretion and diminished glucose clearance. The ultimate purpose of this work was to create a novel antidiabetic drug candidate with bi-functional mode of action. METHODS: All presented compounds were synthesized, and characterized in house. INS-1E cells and L6 myoblasts were used for the experiments. The rate of glucose uptake, mechanism of action, level of insulin secretion and the druggability of the lead compound were studied. RESULTS: The lead compound (6-(1,3-dithiepan-2-yl)-2-phenylchromane), dose- and time-dependently at the low µM range increased the rate of glucose uptake in L6 myotubes and insulin secretion in INS-1E cells. The compound exerted its effects through the activation of the LKB1 (Liver Kinase B1)-AMPK pathway. In vitro metabolic parameters of this lead compound exhibited good druggability. CONCLUSIONS: We anticipate that bi-functionality (increased rate of glucose uptake and augmented insulin secretion) will allow the lead compound to be a starting point for the development of a novel class of antidiabetic drugs.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cromanos/farmacologia , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Cromanos/química , Descoberta de Drogas , Ativação Enzimática/efeitos dos fármacos , Humanos , Hipoglicemiantes/química , Células Secretoras de Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Ratos
13.
Data Brief ; 14: 329-336, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28795110

RESUMO

The data presented in this article are related to the research article entitled "Regulation of GLUT4 activity in myotubes by 3-O-methyl-D-glucose" (Shamni et al., 2017) [1]. These data show that the experimental procedures used to analyze the effects of 3-O-methyl-D-glucose (MeGlc) on the rate of hexose transport into myotubes were valid and controlled. The stimulatory effect of MeGlc was limited to glucose transporter 4 (GLUT4) and was independent of ambient glucose and protein synthesis. Cornish-Bowden kinetic analysis of uptake data revealed that MeGlc attenuated indinavir-induced inhibition of hexose transport in a competitive manner.

14.
Eur J Immunol ; 47(12): 2059-2069, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28741316

RESUMO

The ability of different CD4+ T cell subsets to help CD8+ T-cell response is not fully understood. Here, we found using the murine system that Th17 cells induced by IL-1ß, unlike Th1, were not effective helpers for antiviral CD8 responses as measured by IFNγ-producing cells or protection against virus infection. However, they skewed CD8 responses to a Tc17 phenotype. Thus, the apparent lack of help was actually immune deviation. This skewing depended on both IL-21 and IL-23. To overcome this effect, we inhibited Th17 induction by blocking TGF-ß. Anti-TGF-ß allowed the IL-1ß adjuvant to enhance CD8+ T-cell responses without skewing the phenotype to Tc17, thereby providing an approach to harness the benefit of common IL-1-inducing adjuvants like alum without immune deviation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Anticorpos Bloqueadores/imunologia , Anticorpos Bloqueadores/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Epitopos de Linfócito T/imunologia , Citometria de Fluxo , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
15.
Biochim Biophys Acta Biomembr ; 1859(10): 1900-1910, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28648676

RESUMO

The rate of glucose influx to skeletal muscles is determined primarily by the number of functional units of glucose transporter-4 (GLUT4) in the myotube plasma membrane. The abundance of GLUT4 in the plasma membrane is tightly regulated by insulin or contractile activity, which employ distinct pathways to translocate GLUT4-rich vesicles from intracellular compartments. Various studies have indicated that GLUT4 intrinsic activity is also regulated by conformational changes and/or interactions with membrane components and intracellular proteins in the vicinity of the plasma membrane. Here we show that the non-metabolizable glucose analog 3-O-methyl-d-glucose (MeGlc) augmented the rate of hexose transport into myotubes by increasing GLUT4 intrinsic activity without altering the content of the transporter in the plasma membrane. This effect was not a consequence of ATP depletion or hyperosmolar stress and did not involve Akt/PKB or AMPK signal transduction pathways. MeGlc reduced the inhibitory potency (increased Ki) of indinavir, a selective inhibitor of GLUT4, in a dose-dependent manner. Kinetic analyses indicate that MeGlc induced changes in GLUT4 or GLUT4 complexes within the plasma membrane, which enhanced the hexose transport activity and reduced the potency of indinavir inhibition. Finally, we present a simple kinetic analysis for screening and discovering low molecular weight compounds that augment GLUT4 activity.


Assuntos
3-O-Metilglucose/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Cinética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
Free Radic Biol Med ; 111: 102-109, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27600453

RESUMO

Since the landmark discovery of α,ß-unsaturated 4-hydroxyalkenals by Esterbauer and colleagues most studies have addressed the consequences of the tendency of these lipid peroxidation products to form covalent adducts with macromolecules and modify cellular functions. Many studies describe detrimental and cytotoxic effects of 4-hydroxy-2E-nonenal (4-HNE) in myriad tissues and organs and many pathologies. Other studies similarly assigned unfavorable effects to 4-hydroxy-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE). Nutrient overload (e.g., hyperglycemia, hyperlipidemia) modifies lipid metabolism in cells and promotes lipid peroxidation and the generation of α,ß-unsaturated 4-hydroxyalkenals. Advances glycation- and lipoxidation end products (AGEs and ALEs) have been associated with the development of insulin resistance and pancreatic beta cell dysfunction and the etiology of type 2 diabetes and its peripheral complications. Less acknowledged are genuine signaling properties of 4-hydroxyalkenals in hormetic processes that provide defense against the consequences of nutrient overload. This review addresses recent findings on such lipohormetic mechanisms that are associated with lipid peroxidation in pancreatic beta cells. This article is part of a Special Issue entitled SI: LIPID OXIDATION PRODUCTS, edited by Giuseppe Poli.


Assuntos
Aldeídos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuropatias Diabéticas/metabolismo , Hiperglicemia/metabolismo , Hiperlipidemias/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Diabetes Mellitus Tipo 2/patologia , Neuropatias Diabéticas/patologia , Produtos Finais de Glicação Avançada/metabolismo , Hormese , Humanos , Hiperglicemia/patologia , Hiperlipidemias/patologia , Resistência à Insulina , Células Secretoras de Insulina/patologia , Peroxidação de Lipídeos , Estresse Oxidativo , Fosfolipases A2/metabolismo
17.
Biochimie ; 136: 85-89, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27768859

RESUMO

Activated peroxisome proliferator-activated receptor-δ (PPARδ) induces the expression of genes encoding enzymes that metabolize fatty acids and carbohydrate. Attempts to identify cellular activators of PPARδ produced large lists of various fatty acids and their metabolic derivatives; however, there is no consensus on specific and selective binding interactions of natural ligands with PPARδ. Most models on binding interactions within the ligand binding domain (LBD) of PPARδ have been derived from analyses of PPARδ-LBD crystals formed with synthetic low molecular weight ligands. Nonetheless, crystals of the whole receptor with natural ligands or of its heterodimer with its cognate retinoid X receptor (RXR) are not yet available for analysis. We have found that 4-hydroxyalkenals, non-enzymatic peroxidation products of polyunsaturated fatty acids (PUFA), namely, 4-hydroxy-2E,6Z-dodecadienal (4-HDDE) and 4-hydroxy-2E-nonenal (4-HNE), activate PPARδ in vascular endothelial cells and insulin-secreting beta cells, respectively. In both cases activated PPARδ induced adaptive responses that allowed the cells to adjust to ambient stressful metabolic conditions. This review article addresses the interactions of 4-hydroxyalkenals with PPARδ and the resulting hormetic interactions in cells exposed to nutrient overload conditions.


Assuntos
Aldeídos/farmacologia , Diabetes Mellitus/fisiopatologia , Hormese/efeitos dos fármacos , PPAR delta/agonistas , Aldeídos/metabolismo , Animais , Sítios de Ligação , Humanos , PPAR delta/metabolismo
18.
Mol Aspects Med ; 49: 49-77, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27012748

RESUMO

Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,ß-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.


Assuntos
Hormese , Células Secretoras de Insulina/metabolismo , Peroxidação de Lipídeos , Animais , Complicações do Diabetes/etiologia , Complicações do Diabetes/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Progressão da Doença , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Oxirredução , Estresse Oxidativo , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
19.
Eur J Pharmacol ; 766: 76-85, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26420354

RESUMO

Recently, we showed that deficiency in apolipoprotein A-I (ApoA-I) sensitizes mice to diet-induced obesity, glucose intolerance and NAFLD. Here we investigated the potential involvement of ApoA-I in the pharmacological effects of metformin on glucose intolerance and NAFLD development. Groups of apoa1-deficient (apoa1(-/-)) and C57BL/6 mice fed western-type diet were either treated with a daily dose of 300 mg/kg metformin for 18 weeks or left untreated for the same period. Then, histological and biochemical analyses were performed. Metformin treatment led to a comparable reduction in plasma insulin levels in both C57BL/6 and apoa1(-/-) mice following intraperitoneal glucose tolerance test. However, only metformin-treated C57BL/6 mice maintained sufficient peripheral insulin sensitivity to effectively clear glucose following the challenge, as indicated by a [(3)H]-2-deoxy-D-glucose uptake assay in isolated soleus muscle. Similarly, deficiency in ApoA-I ablated the effect of metformin on hepatic lipid deposition and NAFLD development. Gene expression analysis indicated that the effects of ApoA-I on metformin treatment may be independent of adenosine monophosphate-activated protein kinase (AMPK) activation and de novo lipogenesis. Interestingly, metformin treatment reduced mitochondrial oxidative phosphorylation function only in apoa1(-/-) mice. Our data show that the role of ApoA-I in diabetes extends to the modulation of the pharmacological actions of metformin, a common drug for the treatment of type 2 diabetes.


Assuntos
Apolipoproteína A-I/deficiência , Glicemia/análise , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Metformina/farmacologia , Animais , Apolipoproteína A-I/genética , Colesterol/sangue , Homeostase/efeitos dos fármacos , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Triglicerídeos/sangue
20.
Mol Nutr Food Res ; 59(11): 2293-302, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26304773

RESUMO

SCOPE: We aimed at investigating the mechanisms linking hyperlipidemia (HL) with dysfunctional HDL and its main antioxidant enzyme, paraoxonase1 (PON1). PON1 expression and activity was determined in the small intestine, liver, and sera of normal and HL hamsters and associated with the ER stress (ERS) and the development of aortic valve lesions. METHODS AND RESULTS: Male Golden Syrian hamsters were fed standard chow (N) or standard diet with 3% cholesterol and 15% butter for 16 weeks. All hamsters on fat diet developed HL, 50% also hyperglycemia (HLHG) and a fourfold increased homeostasis model assessment of insuline resistance. PON1 expression was reduced in the small intestine and liver (N > HL > HLHG) along with the increased extent of ERS, oxidized lipids, and decreased expression of liver X receptors beta (LXRß) in the small intestine, peroxisome proliferator-activated receptor-γ (PPARγ) in the liver, and of the glucose transporter 4 in the myocardium. Serum PON1 levels decreased along with the increase of oxidized LDL and lesion areas of the aortic valves (N > HL > HLHG). CONCLUSION: The fat diet activates the ERS and oxidative stress, decreases LXRß, PPARγ, and PON1 in the small intestine, liver, and sera of all HL animals, in parallel with the appearance of atherosclerotic lesions in the aortic valves.


Assuntos
Arildialquilfosfatase/metabolismo , Estresse do Retículo Endoplasmático , Hiperlipidemias/metabolismo , Intestino Delgado/metabolismo , Lipoproteínas HDL/fisiologia , Fígado/metabolismo , Animais , Arildialquilfosfatase/genética , Cricetinae , Dieta Hiperlipídica , Transportador de Glucose Tipo 2/análise , Masculino , Mesocricetus , Miocárdio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...